Question #ae9c3

1 Answer
Sep 4, 2016

dy/dx=3/((1+3x)ln(1+3x))dydx=3(1+3x)ln(1+3x).

Explanation:

Let (1+3x)=t, and, ln(1+3x)=lnt=u(1+3x)=t,and,ln(1+3x)=lnt=u, so that,

y=ln(ln(1+3x)=ln(lnt)=lnuy=ln(ln(1+3x)=ln(lnt)=lnu

Thus, yy is a function of uu, uu of tt, and tt of xx.

Accordingly, by The Chain Rule,

dy/dxdydx=(dy)/(du)dydu(du)/(dt)dudt(dt)/(dx)dtdx.................................(star)()

y=lnu rArr dy/(du)=1/u..........................(1)

u=lnt rArr (du)/dt=1/t..............................(2)

t=1+3x rArr (dt)/dx=3..............................(3)

Therefore, by (1),(2),(3), and, (star), we get,

dy/dx=1/u*1/t*3=3/(tu)

:. dy/dx=3/((1+3x)ln(1+3x)).

Enjoy Maths.!