Let (1+3x)=t, and, ln(1+3x)=lnt=u(1+3x)=t,and,ln(1+3x)=lnt=u, so that,
y=ln(ln(1+3x)=ln(lnt)=lnuy=ln(ln(1+3x)=ln(lnt)=lnu
Thus, yy is a function of uu, uu of tt, and tt of xx.
Accordingly, by The Chain Rule,
dy/dxdydx=(dy)/(du)dydu(du)/(dt)dudt(dt)/(dx)dtdx.................................(star)(⋆)
y=lnu rArr dy/(du)=1/u..........................(1)
u=lnt rArr (du)/dt=1/t..............................(2)
t=1+3x rArr (dt)/dx=3..............................(3)
Therefore, by (1),(2),(3), and, (star), we get,
dy/dx=1/u*1/t*3=3/(tu)
:. dy/dx=3/((1+3x)ln(1+3x)).
Enjoy Maths.!