Question #b2691

1 Answer
Sep 20, 2016

"Sum="736.

Explanation:

Let S be the sum. Then, rearranging the terms of the series,

S=[1+4+7+10+13+... ]+[3+6+9+12+... +45]

#=U+V, say, where,

U=[1+4+7+10+13+... ], &,

V=[3+6+9+12+... +45]

We notice that the General n^(th) Term u_n of the Series U is,

u_n=1+(n-1)3=3n-2", whereas, that for V is "v_n=3n.

Clearly, u_16=46, and, v_15=45.

Therefore, U=sum_(n=1)^16u_n=sum_(n=1)^16(3n-2)

=3sum_(n=1)^16n-2sum_(n=1)^16 1

=3[1/2n(n+1)]_(n=1)^16-2(16)=3/2*16*17-32=408-32=376

Similarly, V=360.

Finally, therefore, S=376+360=736.

In fact, U can easily obtained by using the formula

U=sum_(n=1)^16u_n=[n/2*"(first term+last term)"]

=16/2(1+46)=8*47=376, "as before!"