Am I doing this right? What mass of "HCl"HCl reacts with "3.26 g"3.26 g of "Mg"("OH")_2Mg(OH)2?
"3.26 g Mg"("OH")_2 xx ("1 mol Mg"("OH")_2)/("58.326 g Mg"("OH")_2) xx ("2 mol HCl")/("1 mol Mg"("OH")_2) xx "36.458 g HCl"/"1 mol HCl"3.26 g Mg(OH)2×1 mol Mg(OH)258.326 g Mg(OH)2×2 mol HCl1 mol Mg(OH)2×36.458 g HCl1 mol HCl
== "4.075 g"4.075 g
1 Answer
Here's what I would do. Since
The balanced equation is
2"HCl"(aq) + "Mg"("OH")_2(s) -> 2"H"_2"O"(l) + "MgCl"_2(aq)2HCl(aq)+Mg(OH)2(s)→2H2O(l)+MgCl2(aq)
So we use the general pathway
"g Mg"("OH")_2 stackrel(-: "g/mol Mg"("OH")_2)(->) "mols Mg"("OH")_2 stackrel(xx "mol HCl"/("mol Mg"("OH")_2))(->) "mols HCl" stackrel(xx "g/mol HCl")(->) "g HCl"g Mg(OH)2÷g/mol Mg(OH)2−−−−−−−−−−−→mols Mg(OH)2×mol HClmol Mg(OH)2−−−−−−−→mols HCl×g/mol HCl−−−−−−−→g HCl
to write out
3.26 cancel("g Mg"("OH")_2) xx cancel("1 mol Mg"("OH")_2)/(58.3188 cancel("g Mg"("OH")_2)) xx (2 cancel("mol HCl"))/cancel("1 mol Mg"("OH")_2) xx "36.4609 g HCl"/cancel"1 mol HCl"
= color(blue)("4.08 g HCl")
It looks like your mathematical process is right, but you seem to have used slightly different molar masses.
I used