Question #f51a4

1 Answer
Sep 30, 2016

#Ans.(1) : sin^-1(sin((5pi)/4))=-pi/4.#

#Ans.(2) : sin^-1(sin((5pi)/3))=-pi/3.#

#Ans.(3) : cos^-1(cos((-7pi)/4))=pi/4.#

#Ans.(4) : cos^-1(cos((2pi)/3))=(2pi)/3.#

Explanation:

Let us first recall the Defn. of #sin^-1# fun. :

#sin^-1x=theta, |x|le1 iff sintheta=x, theta in [-pi/2,pi/2].#

#Ans. (1)#

We have, #sin((5pi)/4)=sin(pi+pi/4)=-sin(pi/4)=-1/sqrt2,#

so, #sin^-1(sin((5pi)/4))=sin^-1(-1/sqrt2).#

Now, knowing that #sin(-pi/4)=-1/sqrt2, and, -pi/4 in [-pi/2,pi/2],# we

conclude, from the Defn. of #sin^-1, sin^-1(-1/sqrt2)=-pi/4,# i.e.,

#sin^-1(sin((5pi)/4))=sin^-1(-1/sqrt2)=-pi/4,# which is in the

desired range, i.e., #−π/2≤θ≤π.#

Proceeding as above,

#Ans.(2) : sin^-1(sin((5pi)/3))=-pi/3.#

#Ans.(3) : cos^-1(cos((-7pi)/4))=pi/4.#

#Ans.(4) : cos^-1(cos((2pi)/3))=(2pi)/3.#