Expand #(2x+3y)^3# using binomial theorem expansion? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Shwetank Mauria Oct 7, 2016 #(2x+3y)^3=8x^3+36x^2y+54xy^2+27y^3# Explanation: Using Binomial theorem expansion, #(x+y)^3=x^3+3x^2y+3xy^2+y^3# Hence #(2x+3y)^3# = #(2x)^3+3(2x)^2*3y+3(2x)(3y)^2+(3y)^3# = #8x^3+3*4x^2*3y+3*2x*9y^2+27y^3# = #8x^3+36x^2y+54xy^2+27y^3# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 12782 views around the world You can reuse this answer Creative Commons License