sum_(k=0)^90 cos^2(pi/(180)k) = ?

2 Answers
Oct 4, 2016

cos^2(1)+...+cos^2(90^@)=45.5

Explanation:

Remember that cos(theta)=sin(90^@-theta)
and that cos(90^@)=0

So
cos^2(1)+....+cos^2(89)+cos^2(90)
color(white)("XXX")=cos^2(1)+...+cos^2(89)
color(white)("XXX")=sin^2(89)+...+sin^2(1)
color(white)("XXX")=sin^2(1)+...+sin^2(89)

If s=cos^2(1)+...+cos^2(89)
then
color(white)("XXX")2s=cos^2(1)+...+cos^2(89)
color(white)("XXXXX")underline(+sin^2(1)+...+sin^2(89))
color(white)("XXXXX")=underbrace(1color(white)("XXX")+...+color(white)("X")1)_("89 times")

rarr 2s =89

s=44.5

Oct 4, 2016

44.5

Explanation:

cos^2alpha = 1/2(cos(2alpha)+1) so

sum_(k=1)^n cos^2alpha_k = n/2+1/2sum_(k=1)^ncos(2alpha_k)

now if alpha_k = (pi/(2n))k

sum_(k=1)^ncos(2alpha_k) = cos(pi) = -1 (Cancellation by symmetry)

so

sum_(k=0)^n cos^2(pi/(2n)k) = n/2-1/2 =( n-1)/2

If n = 90 then

sum_(k=0)^90 cos^2(pi/(180)k) = 44.5