Question #d8d7c Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Oct 4, 2016 (1+tanx+secx)(1+cotx−cscx) =(1+sinxcosx+1cosx)(1+cosxsinx−1sinx) =(cosx+sinx+1cosx)(sinx+cosx−1sinx) =(cosx+sinx)2−1cosxsinx =cos2x+sin2x+2sinxcosx−1cosxsinx =1+2sinxcosx−1cosxsinx =2sinxcosxcosxsinx =2 Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 1570 views around the world You can reuse this answer Creative Commons License