Solve the equation 5sin4x=2sin2x if 0^@ <= x <= 360^@?

1 Answer
Oct 17, 2016

Solution is {0^o,39.232^o,90^o,140.768^o,180^o,219.232^o,270^o,320.768^o,360^o}

Explanation:

5sin4x=2sin2x

hArr5xx2sin2xcos2x=2sin2x

or 10sin2xcos2x-2sin2x=0

or 2sin2x(5cos2x-1)=0

Hence either sin2x=0 i.e. 2x={0^o,180^o,360^o,540^o,720^o,....}

or in the given range 0<=x<=360^o, x={0^o,90^o,180^o,270^o,360^o}

or 5cos2x-1=0 i.e. cos2x=1/5=cos(+-78.463^o) i.e.

2x={78.463^o,(360^o-78.463^o),(360^o +78.463^o),(720^o-78.463^o)}

x={39.232^o,140.768^o,219.232^o,320.768^o}

Hence, solution is {0^o,39.232^o,90^o,140.768^o,180^o,219.232^o,270^o,320.768^o,360^o}
graph{5sin(4x)-2sin(2x) [-1, 7.26, -4, 6]}