Prove that #(1+sinx)/(1-sinx)=(secx+tanx)^2#?
3 Answers
Oct 13, 2016
Using the identities
#sin^2(x)+cos^2(x) = 1 => 1-sin^2(x) = cos^2(x)# #(a-b)(a+b) = a^2-b^2#
we have
#=(1+sin(x))^2/(1-sin^2(x))#
#=(1+sin(x))^2/cos^2(x)#
#=((1+sin(x))/cos(x))^2#
#=(1/cos(x)+sin(x)/cos(x))^2#
#=(sec(x)+tan(x))^2#
Oct 13, 2016
Explanation:
Let us start from right hand side.
=
=
=
=
=
=
Oct 13, 2016
Proved