Prove that 1+sinx1sinx=(secx+tanx)2?

3 Answers
Oct 13, 2016

Using the identities

  • sin2(x)+cos2(x)=11sin2(x)=cos2(x)
  • (ab)(a+b)=a2b2

we have

1+sin(x)1sin(x)=(1+sin(x))(1+sin(x))(1sin(x))(1+sin(x))

=(1+sin(x))21sin2(x)

=(1+sin(x))2cos2(x)

=(1+sin(x)cos(x))2

=(1cos(x)+sin(x)cos(x))2

=(sec(x)+tan(x))2

Oct 13, 2016

1+sinx1sinx=(secx+tanx)2

Explanation:

Let us start from right hand side.

(secx+tanx)2

= (1cosx+sinxcosx)2

= (1+sinxcosx)2

= (1+sinx)2cos2x

= (1+sinx)21sin2x

= (1+sinx)21+sinx(1sinx)

= 1+sinx1sinx

Oct 13, 2016

LHS=1+sinx1sinx

=(1+sinx)(1+sinx)(1sinx)(1+sinx)

=(1+sinx)21sin2x

=(1+sinx)2cos2x

=(1+sinxcosx)2

=(1cosx+sinxcosx)2

=(secx+tanx)2

Proved