Prove that 1+sinx1−sinx=(secx+tanx)2?
3 Answers
Oct 13, 2016
Using the identities
sin2(x)+cos2(x)=1⇒1−sin2(x)=cos2(x) (a−b)(a+b)=a2−b2
we have
=(1+sin(x))21−sin2(x)
=(1+sin(x))2cos2(x)
=(1+sin(x)cos(x))2
=(1cos(x)+sin(x)cos(x))2
=(sec(x)+tan(x))2
Oct 13, 2016
Explanation:
Let us start from right hand side.
=
=
=
=
=
=
Oct 13, 2016
Proved