How do you prove that tan^2x = csc^2x * tan^2x - 1tan2x=csc2xtan2x1?

1 Answer
Oct 16, 2016

Apply the identities tantheta = sintheta/costhetatanθ=sinθcosθ and csctheta = 1/sinthetacscθ=1sinθ.

sin^2x/cos^2x = 1/sin^2x xx sin^2x/cos^2x - 1sin2xcos2x=1sin2x×sin2xcos2x1

sin^2x/cos^2x = 1/cos^2x - 1sin2xcos2x=1cos2x1

sin^2x/cos^2x = 1/cos^2x - cos^2x/cos^2xsin2xcos2x=1cos2xcos2xcos2x

Apply the identity 1 - cos^2x = sin^2x1cos2x=sin2x (sin^2x+ cos^2x = 1sin2x+cos2x=1).

sin^2x/cos^2x = sin^2x/cos^2xsin2xcos2x=sin2xcos2x

LHS = RHSLHS=RHS

Hopefully this helps!