If sinu=−45 and π<u<3π2, find sin2u,cos2u and tan2u? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria Aug 22, 2017 sin2u=2425, cos2u=−725 and tan2u=−247 Explanation: As π<u<3π2, u is in Q3 and cosu<0. As sinu=−45, cosu=−√1−(−45)2=−35 Hence, sin2u=2sinucosu=2×(−45)×(−35)=2425 cos2u=cos2u−sin2u=925−1625=−725 and tan2u=sin2ucos2u=2425−725=−247 Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin2x=cosx for the interval [0,2π]? How do you find all solutions for 4sinθcosθ=√3 for the interval [0,2π]? How do you simplify cosx(2sinx+cosx)−sin2x? If tanx=0.3, then how do you find tan 2x? If sinx=53, what is the sin 2x equal to? How do you prove cos2A=2cos2A−1? See all questions in Double Angle Identities Impact of this question 12865 views around the world You can reuse this answer Creative Commons License