Question #b26f0

1 Answer
Nov 1, 2016

C_"rms":C_"av":C_"mp" = 1: 0.9213: 0.8165Crms:Cav:Cmp=1:0.9213:0.8165

Explanation:

These are the root mean square, average, and most probable velocities of a gas molecule.

According to Kinetic Molecular Theory,

C_"rms" = sqrt((3RT)/M)Crms=3RTM

C_"av" = sqrt((8RT)/(πM))

C_"mp" = sqrt((2RT)/M)

The ratio with C_"rms" = 1

C_"rms":C_"av":C_"mp" = sqrt((3RT)/M):sqrt((8RT)/(πM)):sqrt((2RT)/M)

Multiply all values by sqrt(M/(3RT))

C_"rms":C_"av":C_"mp" = sqrt((3RT)/M)×sqrt(M/(3RT)):sqrt((8RT)/(πM))×sqrt(M/(3RT)):sqrt((2RT)/M)×sqrt(M/(3RT)) = 1: sqrt(8/(3π)): sqrt(2/3

C_"rms":C_"av":C_"mp" = 1: 0.9213: 0.8165

The ratio with C_"av" = 1

Multiply all values by sqrt((πM)/(8RT))

C_"rms":C_"av":C_"mp" = sqrt((3RT)/M)×sqrt((πM)/(8RT)):sqrt((8RT)/(πM))×sqrt((πM)/(8RT)):sqrt((2RT)/M)×sqrt((πM)/(8RT)) = sqrt((3π)/8):1 : sqrt(π/4) = 1.009 :1: 0.8862

The ratio with C_"mp" =1

Multiply all values by sqrt(M/(2RT))

C_"rms":C_"av":C_"mp" = sqrt((3RT)/M)×sqrt(M/(2RT)):sqrt((8RT)/(πM))×sqrt(M/(2RT)):sqrt((2RT)/M)×sqrt(M/(2RT)) = sqrt(3/2):sqrt(4/π) :1 = 1.225 :1.128:1