Question #f628c

1 Answer
Oct 29, 2016

Given expression =arcsin((x+1)/sqrt(2*(x²+1)))
Let x = tantheta

So theta=tan^-1x

Inserting x = tantheta the given expression becomes

=arcsin((tantheta+1)/sqrt(2*(tan^2theta+1)))

=arcsin((sintheta/costheta+1)/sqrt(2*(sec^2theta)))

=arcsin(1/sqrt2((sinthetasectheta+1)/(sectheta)))

=arcsin(1/sqrt2((sinthetacancelsectheta)/cancelsectheta+1/(sectheta)))

=arcsin(1/sqrt2(sintheta+costheta))

=arcsin(1/sqrt2sintheta+1/sqrt2costheta)

=arcsin(cos(pi/4)sintheta+sin(pi/4)costheta)

=arcsin(sin(theta+pi/4))

=theta+pi/4

=tan^-1x+pi/4