Given expression #=arcsin((x+1)/sqrt(2*(x²+1)))#
Let #x = tantheta#
So #theta=tan^-1x#
Inserting #x = tantheta# the given expression becomes
#=arcsin((tantheta+1)/sqrt(2*(tan^2theta+1)))#
#=arcsin((sintheta/costheta+1)/sqrt(2*(sec^2theta)))#
#=arcsin(1/sqrt2((sinthetasectheta+1)/(sectheta)))#
#=arcsin(1/sqrt2((sinthetacancelsectheta)/cancelsectheta+1/(sectheta)))#
#=arcsin(1/sqrt2(sintheta+costheta))#
#=arcsin(1/sqrt2sintheta+1/sqrt2costheta)#
#=arcsin(cos(pi/4)sintheta+sin(pi/4)costheta)#
#=arcsin(sin(theta+pi/4))#
#=theta+pi/4#
#=tan^-1x+pi/4#