Given expression =arcsin((x+1)/sqrt(2*(x²+1)))
Let x = tantheta
So theta=tan^-1x
Inserting x = tantheta the given expression becomes
=arcsin((tantheta+1)/sqrt(2*(tan^2theta+1)))
=arcsin((sintheta/costheta+1)/sqrt(2*(sec^2theta)))
=arcsin(1/sqrt2((sinthetasectheta+1)/(sectheta)))
=arcsin(1/sqrt2((sinthetacancelsectheta)/cancelsectheta+1/(sectheta)))
=arcsin(1/sqrt2(sintheta+costheta))
=arcsin(1/sqrt2sintheta+1/sqrt2costheta)
=arcsin(cos(pi/4)sintheta+sin(pi/4)costheta)
=arcsin(sin(theta+pi/4))
=theta+pi/4
=tan^-1x+pi/4