Question #02bba

1 Answer
Nov 2, 2016

Given 0< u< pi/2 0<u<π2 and tanu=5/3tanu=53

we get u=tan^-1(5/3)~~59^@u=tan1(53)59

So 2u=118^@->"In 2nd quadrant"2u=118In 2nd quadrant

Hence sin2u->"+ve"sin2u+ve

But tan2u and cos 2u ->"-ve"tan2uandcos2u-ve

Now

sin2u=(2tanu)/(1+tan^2u)sin2u=2tanu1+tan2u

=>sin2u=(2xx5/3)/(1+(5/3)^2)=10/3xx9/34=15/17sin2u=2×531+(53)2=103×934=1517

cos2u=-(1-tan^2u)/(1+tan^2u)cos2u=1tan2u1+tan2u

=>cos2u=(1-(5/3)^2)/(1+(5/3)^2cos2u=1(53)21+(53)2

=>cos2u=-16/9xx9/34-8/17cos2u=169×934817

tan2u=(2tanu)/(1-tan^2u)tan2u=2tanu1tan2u

=>tan2u=(2xx5/3)/(1-(5/3)^2)=-10/3xx9/16=-15/8tan2u=2×531(53)2=103×916=158