Given 0< u< pi/2 0<u<π2 and tanu=5/3tanu=53
we get u=tan^-1(5/3)~~59^@u=tan−1(53)≈59∘
So 2u=118^@->"In 2nd quadrant"2u=118∘→In 2nd quadrant
Hence sin2u->"+ve"sin2u→+ve
But tan2u and cos 2u ->"-ve"tan2uandcos2u→-ve
Now
sin2u=(2tanu)/(1+tan^2u)sin2u=2tanu1+tan2u
=>sin2u=(2xx5/3)/(1+(5/3)^2)=10/3xx9/34=15/17⇒sin2u=2×531+(53)2=103×934=1517
cos2u=-(1-tan^2u)/(1+tan^2u)cos2u=−1−tan2u1+tan2u
=>cos2u=(1-(5/3)^2)/(1+(5/3)^2⇒cos2u=1−(53)21+(53)2
=>cos2u=-16/9xx9/34-8/17⇒cos2u=−169×934−817
tan2u=(2tanu)/(1-tan^2u)tan2u=2tanu1−tan2u
=>tan2u=(2xx5/3)/(1-(5/3)^2)=-10/3xx9/16=-15/8⇒tan2u=2×531−(53)2=−103×916=−158