Question #362bd

2 Answers
Nov 18, 2016

2log_e(sqrtx+1)2loge(x+1)

Explanation:

Note that 1/(x+sqrt(x))=1/(sqrtx(sqrtx+1))1x+x=1x(x+1) and also that
d/dx(sqrtx+1)=1/2(1/sqrtx)ddx(x+1)=12(1x) so

1/(sqrtx(sqrtx+1))=2(d/dx(sqrtx+1))/(sqrtx+1)1x(x+1)=2ddx(x+1)x+1 so

intdx/(x+sqrt(x))=int1/(x+sqrt(x))dx=int2(d/dx(sqrtx+1))/(sqrtx+1)dx=2log_e(sqrtx+1)dxx+x=1x+xdx=2ddx(x+1)x+1dx=2loge(x+1)

Nov 18, 2016

The answer is =2ln(1+sqrtx)+C=2ln(1+x)+C

Explanation:

The two writing represent the same integral.

Let I=intdx/(x+sqrtx)I=dxx+x

Multiply numerator and denominator by x-sqrtxxx

I=int((x-sqrtx)dx)/((x+sqrtx)(x-sqrtx))I=(xx)dx(x+x)(xx)

=int((x-sqrtx)dx)/(x^2-x)=(xx)dxx2x

Solving by substitution

Let u=sqrtxu=x ;
u^2=xu2=x

u^4 =x^2u4=x2

du=dx/(2sqrtx)du=dx2x

dx=2ududx=2udu

I=int(u^2-u)(2udu)/(u^4-u^2)I=(u2u)2uduu4u2

=2int(u^2(u-1)du)/(u^2(u^2-1))=2u2(u1)duu2(u21)

=2int(cancel(u-1)du)/((u+1)cancel(u-1))

=2ln(u+1)

=2ln(1+sqrtx)+C