Give ZZ complex, what is Z^(1/n)Z1n ?

1 Answer
Dec 1, 2016

See below.

Explanation:

Any complex number ZZ can be represented as

Z = r e^(i (phi + 2k pi))Z=rei(ϕ+2kπ).

For instance, if Z = x + i yZ=x+iy then

r = sqrt(x^2+y^2)r=x2+y2 and phi= arctan(y/x)ϕ=arctan(yx).

Here we are using de Moivre's identity which reads

e^(i phi) = cos(phi)+i sin(phi)eiϕ=cos(ϕ)+isin(ϕ)

so

Z^(1/n)=r^(1/n) e^(i (phi + 2k pi)/n)Z1n=r1neiϕ+2kπn or equivalently

Z^(1/n)=r^(1/n)(cos((phi + 2k pi)/n)+isin((phi + 2k pi)/n))Z1n=r1n(cos(ϕ+2kπn)+isin(ϕ+2kπn))

for k = 0,1,cdots,n-1k=0,1,,n1