Question #e6569
1 Answer
Jan 6, 2017
If the point
We have all three coordinates of the triangle
#A(L,0)# ,#B(0,K)# and#C(x,2x)#
The area of the triangle can then be calculated using the
shoelace formula:
#A=1/2|(x_A−x_C)(y_B−y_A)−(x_A−x_B)(y_C−y_A)|#
So we get:
# \ \ \ \ \ a=1/2|(L-x)(K-0)-(L-0)(2x-K)| #
# :. a=1/2|(L-x)K-L(2x-K)| #
# :. a=1/2|LK-Kx-2Lx+LK| #
# :. a=1/2|-Kx-2Lx| #
# :. a=1/2|-1(Kx+2Lx)| #
# :. a=1/2|Kx+2Lx| #
We are told that both
# \ \ \ \ \ a=1/2(Kx+2Lx) #
# :. a=1/2Kx+Lx #
And differentiating wrt
# \ \ (da)/dx=1/2K+L " "# QED