Question #e6569

1 Answer
Jan 6, 2017

If the point #C# lies on the line #y=2x# then it will have the general coordinate #(x,2x)#.

enter image source here

We have all three coordinates of the triangle #ABC#, namely:

#A(L,0)#, #B(0,K)# and #C(x,2x)#

The area of the triangle can then be calculated using the
shoelace formula:

#A=1/2|(x_A−x_C)(y_B−y_A)−(x_A−x_B)(y_C−y_A)|#

So we get:

# \ \ \ \ \ a=1/2|(L-x)(K-0)-(L-0)(2x-K)| #
# :. a=1/2|(L-x)K-L(2x-K)| #
# :. a=1/2|LK-Kx-2Lx+LK| #
# :. a=1/2|-Kx-2Lx| #
# :. a=1/2|-1(Kx+2Lx)| #
# :. a=1/2|Kx+2Lx| #

We are told that both #K# and #L# are positive so providing #x# is also positive (wlog) then:

# \ \ \ \ \ a=1/2(Kx+2Lx) #
# :. a=1/2Kx+Lx #

And differentiating wrt #x# gives the required result:

# \ \ (da)/dx=1/2K+L " "# QED