Question #04652

1 Answer
Feb 7, 2017

see below

Explanation:

Left Hand Side:

(tan^2x-1)/(cot^2x-1) = (sin^2x/cos^2x -1)/(cos^2x/sin^2x -1)tan2x1cot2x1=sin2xcos2x1cos2xsin2x1

=(sin^2x/cos^2x -cos^2x/cos^2x)/(cos^2x/sin^2x -sin^2x/sin^2x)=sin2xcos2xcos2xcos2xcos2xsin2xsin2xsin2x

=((sin^2x-cos^2x)/cos^2x)/((cos^2x -sin^2x)/sin^2x)=sin2xcos2xcos2xcos2xsin2xsin2x

=(sin^2x-cos^2x)/cos^2x *sin^2x/(cos^2x -sin^2x)=sin2xcos2xcos2xsin2xcos2xsin2x

=(sin^2x-cos^2x)/cos^2x *sin^2x/(-(sin^2x-cos^2x)=sin2xcos2xcos2xsin2x(sin2xcos2x)

=cancel(sin^2x-cos^2x)/cos^2x *sin^2x/(-cancel(sin^2x-cos^2x)

=sin^2x/(-cos^2x)

=(1-cos^2x)/(-cos^2x)

=1/(-cos^2x) -cos^2x/(-cos^2x)

=1/(-cos^2x)+cancel(cos^2x)/cancel(cos^2x)

=-1/cos^2x +1

=1-1/cos^2x