Question #6f533

1 Answer
Dec 15, 2016

x2x+1dx=(2x+1)32(15x115)+C

Explanation:

Using the integration by parts formula

udv=uvvdu

Let
u=xdu=dx
dv=(2x+1)12dxv=13(2x+1)32

x2x+1dx=udv

=uvvdu

=13x(2x+1)3213(2x+1)32dx

=13x(2x+1)3213[15(2x+1)52]+C

=13x(2x+1)32115(2x+1)52+C

=13(2x+1)32[x15(2x+1)]+C

=(2x+1)32(15x115)+C