#LHS=sin ^2 theta + sin^2 (theta+pi/3) + sin^2 (theta-pi/3)#
#=1/2(2sin ^2 theta + 2sin^2 (theta+pi/3) + 2sin^2 (theta-pi/3)#
#=1/2(1-cos2 theta + 1-cos2 (theta+pi/3) + 1-cos2 (theta-pi/3)#
#=1/2(3-cos2 theta -(cos2 (theta+pi/3) + cos2 (theta-pi/3))#
#=1/2(3-cos2 theta -2cos2 thetacos((2pi)/3))#
#=1/2(3-cos2 theta -2cos2 thetaxx(-1/2))#
#=3/2=RHS#
Proved