Question #24cce Calculus Methods of Approximating Integrals RAM (Rectangle Approximation Method/Riemann Sum) 1 Answer Cesareo R. Jan 11, 2017 #int_a^bsin(x)dx=lim_(n->oo)(b-a)/nsum_(k=0)^nsin(a+k/n(b-a))# Explanation: #int_a^bsin(x)dx=lim_(n->oo)(b-a)/nsum_(k=0)^nsin(a+k/n(b-a))# Answer link Related questions What is Integration using rectangles? Find the riemann sum for #f(x)=x+x^2#? How do you Find the Riemann sum for #f(x)=x^3# on the interval #[0,5]# using right endpoints with #n=8#? How do you find Find the Riemann sum that approximates the integral #int_0^9sqrt(1+x^2)dx# using... How do you Use a Riemann sum to approximate the area under the graph of the function #y=f(x)# on... How do you use a Riemann sum to calculate a definite integral? How do you Use a Riemann sum to find area? How do you Use a Riemann sum to find volume? What is a left Riemann sum? What is lower Riemann sum? See all questions in RAM (Rectangle Approximation Method/Riemann Sum) Impact of this question 1330 views around the world You can reuse this answer Creative Commons License