Question #a4b38 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Dec 21, 2016 Given #sin(A+B)/cos(A-B) = (1-m)/(1+m)# Let #pi/4-A=x and pi/4-B =y# So #pi/2-(A+B)=(x+y)# #=>cos(pi/2-(A+B))=cos(x+y)# #=>sin(A+B)=cos(x+y)# Again #(A-B)=(y-x)# #cos(A-B)=cos(y-x)# Now #cos(x+y)/cos(y-x) = (1-m)/(1+m)# #=>cos(x-y)/cos(y+x) = (1+m)/(1-m)# By componendo and dividendo #=>(cos(y-x)+cos(y+x))/ (cos(y-x)-cos(y+x))=2/(2m)# #=>(2cosxcosy)/(2sinxsiny)=1/m# #=>coty/tanx=1/m# #=>tanx=mcoty# #=>tan(pi/4-A)=mcot(pi/4-B)# Proved Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1965 views around the world You can reuse this answer Creative Commons License