#cos2theta-sintheta=0#
#=>cos2theta=sintheta#
#=>cos2theta=cos(pi/2-theta)#
#=>2theta=2npipm(pi/2-theta)#
when
#2theta=2npi+(pi/2-theta)" where " n in ZZ#
#=>3theta=2npi+pi/2#
#=>theta=(2npi)/3+pi/6=(4n+1)pi/6#
when
#2theta=2npi-(pi/2-theta)" where " n in ZZ#
#=>theta=2npi-pi/2=(4n-1)pi/2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alternative
#cos2theta-sintheta=0#
#=>1-2sin^2theta-sintheta=0#
#=>2sin^2theta+sintheta-1=0#
#=>2sin^2theta+2sintheta-sintheta-1=0#
#=>2sintheta(sintheta+1)-(sintheta+1)=0#
#=>(sintheta+1)(2sintheta-1)=0#
So
#sintheta+1=0#
#=>sintheta=-1=sin(-pi/2)#
#theta=npi-(-1)^npi/2" where " n in ZZ#
Again
#2sintheta-1=0#
#=>sintheta=1/2=sin(pi/6)#
#theta=npi+(-1)^npi/6" where " n in ZZ#