Find # int int_D (4-x^2)^(-1/2y^2) dA# where# D={(x,y) in RR | (x^2+y^2=4 } #?
1 Answer
# int int_D (4-x^2)^(-1/2y^2) dA = 0#
Explanation:
We want to evaluate;
# int int_D (4-x^2)^(-1/2y^2) dA# where:
# D={(x,y) in RR | (x^2+y^2=4 } #
Which represents the circumference a circle centre
We can easily demonstrate this as follows:
If we convert to Polar Coordinates then the region
an angle from
#theta=0# to#theta=p2i#
a ray of fixed length#r=2# .
And as we convert to Polar coordinates we get:
#x \ \ \ = rcos theta = 2cos theta#
#y \ \ \ = rsin theta = 2 sin theta#
#dA = dy dx \ \ = r dr d theta = 2 dr d theta#
So then the integral becomes:
# int int_D (4-x^2)^(-1/2y^2) dA #
# " " = int_0^(2pi) int_2^2 (4-(2cos theta)^2)^(-1/2(2 sin theta)^2) 2 dr d theta#
If we look at the inner integral:
# int_2^2 (4-(2cos theta)^2)^(-1/2(2 sin theta)^2) 2 dr#
As the upper and lower bounds of integration are the same the integral is zero.
Hence:
# int int_D (4-x^2)^(-1/2y^2) dA = int_0^(2pi) 0 \ d theta#
Which is also