Question #98482

1 Answer
Jun 5, 2017

int (sin^2(x/2)+cos^2(x/2))/(sin(x/2) - cos(x/2))dx = sqrt2 ln abs ((tan(x/4) +1 -sqrt(2))/(tan(x/4) +1 +sqrt2)) + Csin2(x2)+cos2(x2)sin(x2)cos(x2)dx=2ln∣ ∣tan(x4)+12tan(x4)+1+2∣ ∣+C

Explanation:

Based on the fundamental trigonometric identity:

sin^2 alpha + cos^2 alpha = 1sin2α+cos2α=1

we have that:

int (sin^2(x/2)+cos^2(x/2))/(sin(x/2) - cos(x/2))dx = int dx/(sin(x/2)- cos(x/2))sin2(x2)+cos2(x2)sin(x2)cos(x2)dx=dxsin(x2)cos(x2)

Use now the parametric fomulas:

sin(x/2) = (2tan(x/4))/(1+tan^2(x/4))sin(x2)=2tan(x4)1+tan2(x4)

cos(x/2) = (1-tan^2(x/4))/(1+tan^2(x/4))cos(x2)=1tan2(x4)1+tan2(x4)

substituting:

t= tan(x/4)t=tan(x4)

x = 4arctan(t)x=4arctan(t)

dx = (4dt)/(1+t^2)dx=4dt1+t2

we have:

int dx/(sin(x/2)- cos(x/2)) = int 1/( (2t)/(1+t^2) - (1-t^2)/(1+t^2)) (4dt)/(1+t^2)dxsin(x2)cos(x2)=12t1+t21t21+t24dt1+t2

int dx/(sin(x/2)- cos(x/2)) = 4 int (dt)/(t^2+2t-1)dxsin(x2)cos(x2)=4dtt2+2t1

Complete the square at the denominator:

int dx/(sin(x/2)- cos(x/2)) = 4 int (dt)/((t+1)^2-2) = 2int (dt)/(((t+1)/sqrt2)^2 -1)dxsin(x2)cos(x2)=4dt(t+1)22=2dt(t+12)21

Substitute again:

u = (t+1)/sqrt2u=t+12

dt =sqrt2 dudt=2du

so:

int dx/(sin(x/2)- cos(x/2)) = 2sqrt2 int (du)/(u^2-1)dxsin(x2)cos(x2)=22duu21

factorize the denominator and perform partial fractions decompositions:

1/(u^2-1) = 1/((u-1)(u+1)) = 1/2(1/(u-1) - 1/(u+1))1u21=1(u1)(u+1)=12(1u11u+1)

Then:

int dx/(sin(x/2)- cos(x/2)) = sqrt2 (int (du)/(u-1) -int (du)/(u+1))dxsin(x2)cos(x2)=2(duu1duu+1)

int dx/(sin(x/2)- cos(x/2)) = sqrt2(ln abs (u-1) - ln abs (u+1)) +Cdxsin(x2)cos(x2)=2(ln|u1|ln|u+1|)+C

using the properties of logarithms:

int dx/(sin(x/2)- cos(x/2)) = sqrt2 ln abs ((u-1)/(u+1))+C dxsin(x2)cos(x2)=2lnu1u+1+C

undoing the substitutions:

u = (tan(x/4)+1)/sqrt2u=tan(x4)+12

(u-1)/(u+1) = ( ( tan(x/4)+1)/sqrt2 -1)/((tan(x/4)+1)/sqrt2+1) = (tan(x/4) +1 -sqrt(2))/(tan(x/4) +1 +sqrt2)u1u+1=tan(x4)+121tan(x4)+12+1=tan(x4)+12tan(x4)+1+2

Finally:

int dx/(sin(x/2)- cos(x/2)) = sqrt2 ln abs ((tan(x/4) +1-sqrt(2))/(tan(x/4) +1 +sqrt2)) + Cdxsin(x2)cos(x2)=2ln∣ ∣tan(x4)+12tan(x4)+1+2∣ ∣+C