Based on the fundamental trigonometric identity:
sin^2 alpha + cos^2 alpha = 1sin2α+cos2α=1
we have that:
int (sin^2(x/2)+cos^2(x/2))/(sin(x/2) - cos(x/2))dx = int dx/(sin(x/2)- cos(x/2))∫sin2(x2)+cos2(x2)sin(x2)−cos(x2)dx=∫dxsin(x2)−cos(x2)
Use now the parametric fomulas:
sin(x/2) = (2tan(x/4))/(1+tan^2(x/4))sin(x2)=2tan(x4)1+tan2(x4)
cos(x/2) = (1-tan^2(x/4))/(1+tan^2(x/4))cos(x2)=1−tan2(x4)1+tan2(x4)
substituting:
t= tan(x/4)t=tan(x4)
x = 4arctan(t)x=4arctan(t)
dx = (4dt)/(1+t^2)dx=4dt1+t2
we have:
int dx/(sin(x/2)- cos(x/2)) = int 1/( (2t)/(1+t^2) - (1-t^2)/(1+t^2)) (4dt)/(1+t^2)∫dxsin(x2)−cos(x2)=∫12t1+t2−1−t21+t24dt1+t2
int dx/(sin(x/2)- cos(x/2)) = 4 int (dt)/(t^2+2t-1)∫dxsin(x2)−cos(x2)=4∫dtt2+2t−1
Complete the square at the denominator:
int dx/(sin(x/2)- cos(x/2)) = 4 int (dt)/((t+1)^2-2) = 2int (dt)/(((t+1)/sqrt2)^2 -1)∫dxsin(x2)−cos(x2)=4∫dt(t+1)2−2=2∫dt(t+1√2)2−1
Substitute again:
u = (t+1)/sqrt2u=t+1√2
dt =sqrt2 dudt=√2du
so:
int dx/(sin(x/2)- cos(x/2)) = 2sqrt2 int (du)/(u^2-1)∫dxsin(x2)−cos(x2)=2√2∫duu2−1
factorize the denominator and perform partial fractions decompositions:
1/(u^2-1) = 1/((u-1)(u+1)) = 1/2(1/(u-1) - 1/(u+1))1u2−1=1(u−1)(u+1)=12(1u−1−1u+1)
Then:
int dx/(sin(x/2)- cos(x/2)) = sqrt2 (int (du)/(u-1) -int (du)/(u+1))∫dxsin(x2)−cos(x2)=√2(∫duu−1−∫duu+1)
int dx/(sin(x/2)- cos(x/2)) = sqrt2(ln abs (u-1) - ln abs (u+1)) +C∫dxsin(x2)−cos(x2)=√2(ln|u−1|−ln|u+1|)+C
using the properties of logarithms:
int dx/(sin(x/2)- cos(x/2)) = sqrt2 ln abs ((u-1)/(u+1))+C ∫dxsin(x2)−cos(x2)=√2ln∣∣∣u−1u+1∣∣∣+C
undoing the substitutions:
u = (tan(x/4)+1)/sqrt2u=tan(x4)+1√2
(u-1)/(u+1) = ( ( tan(x/4)+1)/sqrt2 -1)/((tan(x/4)+1)/sqrt2+1) = (tan(x/4) +1 -sqrt(2))/(tan(x/4) +1 +sqrt2)u−1u+1=tan(x4)+1√2−1tan(x4)+1√2+1=tan(x4)+1−√2tan(x4)+1+√2
Finally:
int dx/(sin(x/2)- cos(x/2)) = sqrt2 ln abs ((tan(x/4) +1-sqrt(2))/(tan(x/4) +1 +sqrt2)) + C∫dxsin(x2)−cos(x2)=√2ln∣∣
∣∣tan(x4)+1−√2tan(x4)+1+√2∣∣
∣∣+C