1/(x+1)^2= -d/(dx)(1/(x+1))1(x+1)2=−ddx(1x+1) but
1/(x+1)=1/(2+x-1)=1/2(1/(1+(x-1)/2)) = 1/2sum_(k=0)^oo(-1)^k((x-1)/2)^k1x+1=12+x−1=12(11+x−12)=12∞∑k=0(−1)k(x−12)k for abs((x-1)/2)<1∣∣∣x−12∣∣∣<1
but
-d/(dx)(1/2sum_(k=0)^oo(-1)^k((x-1)/2)^k)=-1/2^2sum_(k=1)^oo(-1)^k k/2^(k-1)(x-1)^(k-1) = sum_(k=0)^oo(-1)^k ((k+1)/2^(k+2))(x-1)^k−ddx(12∞∑k=0(−1)k(x−12)k)=−122∞∑k=1(−1)kk2k−1(x−1)k−1=∞∑k=0(−1)k(k+12k+2)(x−1)k
Making x = 1/2x=12 we have
sum_(k=0)^oo(-1)^k ((k+1)/4^(k+1)) = 1/(1/2+1)^2 = (2/3)^2∞∑k=0(−1)k(k+14k+1)=1(12+1)2=(23)2