sum_(k=0)^oo(-1)^k ((k+1)/4^(k+1)) =k=0(1)k(k+14k+1)= ?

1 Answer
Mar 3, 2017

See below.

Explanation:

1/(x+1)^2= -d/(dx)(1/(x+1))1(x+1)2=ddx(1x+1) but

1/(x+1)=1/(2+x-1)=1/2(1/(1+(x-1)/2)) = 1/2sum_(k=0)^oo(-1)^k((x-1)/2)^k1x+1=12+x1=12(11+x12)=12k=0(1)k(x12)k for abs((x-1)/2)<1x12<1

but

-d/(dx)(1/2sum_(k=0)^oo(-1)^k((x-1)/2)^k)=-1/2^2sum_(k=1)^oo(-1)^k k/2^(k-1)(x-1)^(k-1) = sum_(k=0)^oo(-1)^k ((k+1)/2^(k+2))(x-1)^kddx(12k=0(1)k(x12)k)=122k=1(1)kk2k1(x1)k1=k=0(1)k(k+12k+2)(x1)k

Making x = 1/2x=12 we have

sum_(k=0)^oo(-1)^k ((k+1)/4^(k+1)) = 1/(1/2+1)^2 = (2/3)^2k=0(1)k(k+14k+1)=1(12+1)2=(23)2