Question #d3912
1 Answer
Mar 3, 2017
Explanation:
Let's tackle each of these parts separately.
xy=eln(xy)=eylnx
Then:
ddxxy=ddxeylnx=eylnxddx(ylnx)
Which can be found through the product rule:
ddxxy=eylnx(dydxlnx+yx)=xy(dydxlnx+yx)
The other:
yx=eln(yx)=exlny
So:
ddxyx=ddxexlny=exlnyddx(xlny)
Product rule:
ddxyx=exlny(lny+xydydx)=yx(lny+xydydx)
So, we see that the differentiated implicit function becomes:
xy+yx=1
⇒xy(dydxlnx+yx)+yx(lny+xydydx)=0
Expanding and keeping all terms with
xylnxdydx+yxxydydx=−xyyx−yxlny
Factoring and simplifying exponents:
dydx(xylnx+xyx−1)=−(yxy−1+yxlny)
dydx=−yxy−1+yxlnyxylnx+xyx−1