Question #d3912

1 Answer
Mar 3, 2017

#dy/dx=-(yx^(y-1)+y^xlny)/(x^ylnx+xy^(x-1))#

Explanation:

Let's tackle each of these parts separately.

#x^y=e^ln(x^y)=e^(ylnx)#

Then:

#d/dxx^y=d/dxe^(ylnx)=e^(ylnx)d/dx(ylnx)#

Which can be found through the product rule:

#d/dxx^y=e^(ylnx)(dy/dxlnx+y/x)=x^y(dy/dxlnx+y/x)#

The other:

#y^x=e^ln(y^x)=e^(xlny)#

So:

#d/dxy^x=d/dxe^(xlny)=e^(xlny)d/dx(xlny)#

Product rule:

#d/dxy^x=e^(xlny)(lny+x/ydy/dx)=y^x(lny+x/ydy/dx)#

So, we see that the differentiated implicit function becomes:

#x^y+y^x=1#

#=>x^y(dy/dxlnx+y/x)+y^x(lny+x/ydy/dx)=0#

Expanding and keeping all terms with #dy/dx# on one side:

#x^ylnxdy/dx+y^x x/ydy/dx=-x^yy/x-y^xlny#

Factoring and simplifying exponents:

#dy/dx(x^ylnx+xy^(x-1))=-(yx^(y-1)+y^xlny)#

#dy/dx=-(yx^(y-1)+y^xlny)/(x^ylnx+xy^(x-1))#