Question #d3912

1 Answer
Mar 3, 2017

dydx=yxy1+yxlnyxylnx+xyx1

Explanation:

Let's tackle each of these parts separately.

xy=eln(xy)=eylnx

Then:

ddxxy=ddxeylnx=eylnxddx(ylnx)

Which can be found through the product rule:

ddxxy=eylnx(dydxlnx+yx)=xy(dydxlnx+yx)

The other:

yx=eln(yx)=exlny

So:

ddxyx=ddxexlny=exlnyddx(xlny)

Product rule:

ddxyx=exlny(lny+xydydx)=yx(lny+xydydx)

So, we see that the differentiated implicit function becomes:

xy+yx=1

xy(dydxlnx+yx)+yx(lny+xydydx)=0

Expanding and keeping all terms with dydx on one side:

xylnxdydx+yxxydydx=xyyxyxlny

Factoring and simplifying exponents:

dydx(xylnx+xyx1)=(yxy1+yxlny)

dydx=yxy1+yxlnyxylnx+xyx1