Simplify [2(tanx-cotx)]/(tan^2x-cot^2x)?

2 Answers
Jan 15, 2017

LHS=(2(tanx-cotx))/(tan^2x-cot^2x)

=(2(tanx-cotx))/((tanx-cotx)(tanx+cotx))

=(2tanx)/(tanx(tanx+cotx))

=(2tanx)/(1+tan^2x)=sin2x=RHS

Proved

Jan 15, 2017

[2(tanx-cotx)]/(tan^2x-cot^2x)=sin2x

Explanation:

Using the identity a^2-b^2=(a+b)(a-b),

we can split the term (tan^2x-cot^2x)=(tanx+cotx)(tanx-cotx) and we get

[2(tanx-cotx)]/(tan^2x-cot^2x)

= [2(tanx-cotx)]/((tanx+cotx)(tanx-cotx))

= 2/((tanx+cotx))

= 2/((tanx+cotx))

= 2/((sinx/cosx+cosx/sinx))

= 2/((sin^2x+cos^2x)/(sinxcosx)

= 2/(1/(sinxcosx)

= 2xx(sinxcosx)/1

= 2sinxcosx

= sin2x