What is #lim_(n -> oo) n ln((n + 1)/n)#?
1 Answer
The limit equals
Explanation:
Using logarithm laws:
#L = lim_(n -> oo) n(ln((n + 1)/n))#
#L = lim_(n->oo) n(ln(1 + 1/n))#
We can now do a little algebraic reworking:
#L = lim_(n-> oo) ln(1 + 1/n)/(1/n#
Now if you evaluate
#L = lim_(n-> oo) (-1/(n^2 + n))/(-1/n^2)#
#L = lim_(n->oo) n^2/(n^2 + n)#
#L = lim_(n-> oo) n^2/(n(n + 1))#
# L = lim_(n->oo) n/(n + 1)#
We now use partial fractions to decompose.
#n/(n + 1) = A/(n + 1) + B/1#
#n = A + B(n + 1)#
#n = A + Bn + B#
We can see instantly that
#L = lim_(n->oo) -1/(n + 1) + 1#
#L = lim_(n-> oo) -1/(n + 1) + lim_(n ->oo) 1#
The first limit is clearly
#L = 0 + 1#
#L = 1#
If we check graphically, we can see this is evidently true.
Hopefully this helps!