Question #db5cd

1 Answer
Feb 10, 2017

1 - lnroot(3)(2) = x1ln32=x

Explanation:

Use a^-n = 1/a^nan=1an:

1/e = 2e^(3x - 4)1e=2e3x4

Cross multiply:

1 = 2e^(3x - 4)e^11=2e3x4e1

Use a^m * a^n = a^(m + n)aman=am+n

1 = 2e^(3x - 4 + 1)1=2e3x4+1

1 = 2e^(3x - 3)1=2e3x3

1/2 = e^(3x - 3)12=e3x3

Take the natural logarithm of both sides.

ln(1/2) = ln(e^(3x- 3))ln(12)=ln(e3x3)

Use lna^n = nlnalnan=nlna.

ln(1/2) = (3x- 3)lneln(12)=(3x3)lne

lnln and ee are inverses--their product is 11

ln(1/2) = 3x- 3ln(12)=3x3

1/3(ln(1/2) + 3) = x13(ln(12)+3)=x

Use ln(a/b) = lna - lnbln(ab)=lnalnb.

1/3(ln1 - ln2 + 3) = x13(ln1ln2+3)=x

We know that ln1= 0ln1=0.

1/3(3 - ln2) = x13(3ln2)=x

1 - 1/3ln2 = x113ln2=x

Use alnn = lnn^aalnn=lnna.

1 - ln2^(1/3) = x1ln213=x

1 - lnroot(3)(2) = x1ln32=x

Hopefully this helps!