Question #db5cd
1 Answer
Feb 10, 2017
Explanation:
Use
1/e = 2e^(3x - 4)1e=2e3x−4
Cross multiply:
1 = 2e^(3x - 4)e^11=2e3x−4e1
Use
1 = 2e^(3x - 4 + 1)1=2e3x−4+1
1 = 2e^(3x - 3)1=2e3x−3
1/2 = e^(3x - 3)12=e3x−3
Take the natural logarithm of both sides.
ln(1/2) = ln(e^(3x- 3))ln(12)=ln(e3x−3)
Use
ln(1/2) = (3x- 3)lneln(12)=(3x−3)lne
ln(1/2) = 3x- 3ln(12)=3x−3
1/3(ln(1/2) + 3) = x13(ln(12)+3)=x
Use
1/3(ln1 - ln2 + 3) = x13(ln1−ln2+3)=x
We know that
1/3(3 - ln2) = x13(3−ln2)=x
1 - 1/3ln2 = x1−13ln2=x
Use
1 - ln2^(1/3) = x1−ln213=x
1 - lnroot(3)(2) = x1−ln3√2=x
Hopefully this helps!