sqrt((1+cos theta)/(1-cos theta)) √1+cosθ1−cosθ
multiply with sqrt (1+cos theta)√1+cosθ
sqrt((1+cos theta)/(1-cos theta))*sqrt((1+cos theta)/(1+cos theta)) √1+cosθ1−cosθ⋅√1+cosθ1+cosθ
sqrt(((1+cos theta)/(1-cos theta))*((1+cos theta)/(1+cos theta)) √(1+cosθ1−cosθ)⋅(1+cosθ1+cosθ)
= sqrt((1+cos theta)^2/((1-cos^2 theta)) =√(1+cosθ)2(1−cos2θ)
= sqrt((1+cos theta)^2/sin^2 theta) = (1+cos theta)/sin theta=√(1+cosθ)2sin2θ=1+cosθsinθ
= 1/sin theta +cos theta/sin theta=1sinθ+cosθsinθ
=cosec theta + cot theta=cosecθ+cotθ