Question #7cb8c

1 Answer
Jan 31, 2017

see explanation

Explanation:

sqrt((1+cos theta)/(1-cos theta)) 1+cosθ1cosθ

multiply with sqrt (1+cos theta)1+cosθ

sqrt((1+cos theta)/(1-cos theta))*sqrt((1+cos theta)/(1+cos theta)) 1+cosθ1cosθ1+cosθ1+cosθ

sqrt(((1+cos theta)/(1-cos theta))*((1+cos theta)/(1+cos theta)) (1+cosθ1cosθ)(1+cosθ1+cosθ)

= sqrt((1+cos theta)^2/((1-cos^2 theta)) =(1+cosθ)2(1cos2θ)

= sqrt((1+cos theta)^2/sin^2 theta) = (1+cos theta)/sin theta=(1+cosθ)2sin2θ=1+cosθsinθ

= 1/sin theta +cos theta/sin theta=1sinθ+cosθsinθ

=cosec theta + cot theta=cosecθ+cotθ