For what values of x is the function f(x) = sin x + cos x continuous?
1 Answer
It is continuous on the whole of
Explanation:
Given
If you are happy that
On the other hand, if you want to prove it from basic principles, we can proceed as follows:
We find:
f(x) = sin x + cos x
color(white)(f(x)) = sqrt(2)(sqrt(2)/2 sin x + sqrt(2)/2 cos x)
color(white)(f(x)) = sqrt(2)(sin x cos (pi/4) + cos x sin (pi/4))
color(white)(f(x)) = sqrt(2)sin (x+pi/4)
Then:
f(x+delta) = sqrt(2)sin (x + pi/4 + delta)
color(white)(f(x+delta)) = sqrt(2)(sin (x + pi/4) cos delta + cos (x + pi/4) sin delta)
Note that:
{ (lim_(delta->0) sin delta = 0), (lim_(delta->0) cos delta = 1) :}
So:
lim_(delta->0) f(x + delta) = lim_(delta->0) sqrt(2)(sin (x + pi/4) cos delta + cos (x + pi/4) sin delta)
color(white)(lim_(delta->0) f(x + delta)) = sqrt(2)(sin (x + pi/4) (1) + cos (x + pi/4) (0))
color(white)(lim_(delta->0) f(x + delta)) = sqrt(2)sin (x + pi/4)
color(white)(lim_(delta->0) f(x + delta)) = f(x)
So