Write the equation r=2cos2thetar=2cos2θ in polar form in Cartesian or rectangular form?

1 Answer
Dec 6, 2017

(x^2+y^2)^(3/2)=2(x^2-y^2)(x2+y2)32=2(x2y2)

Explanation:

The relation between polar coordinates (r,theta)(r,θ) and rectangular or Cartesian coordinates (x,y)(x,y) is given by

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ i.e. x^2+y^2=r^2x2+y2=r2

Hence r=2cos2theta=2(cos^2theta-sin^2theta)r=2cos2θ=2(cos2θsin2θ)

or r^3=2(r^2cos^2theta-r^2sin^2theta)r3=2(r2cos2θr2sin2θ)

i.e. (x^2+y^2)^(3/2)=2(x^2-y^2)(x2+y2)32=2(x2y2)

The graph appears as shown below.

graph{(x^2+y^2)^(3/2)=2(x^2-y^2) [-2.5, 2.5, -1.25, 1.25]}