Consider the function:
#f(x) = (e^x+30x)^(1/x)#
and take its logarithm:
#ln f(x) = ln((e^x+30x)^(1/x))#
using the properties of logarithm this is:
#ln f(x) = 1/x ln(e^x+30x)#
Now evaluate:
#lim_(x->0) ln f(x) = lim_(x->0) ln(e^x+30x)/x#
it is in the indeterminate form #0/0# so we can use l'Hospital's rule:
#lim_(x->0) ln f(x) = lim_(x->0) (d/dx ln(e^x+30x))/(d/dx x) = lim_(x->0) (e^x+30)/(e^x+30x) = 31#
Since #lnx# is a continuous function in #(0,+oo)#:
#31 = lim_(x->0) ln f(x) = ln(lim_(x->0) f(x))#
so that:
#lim_(x->0) f(x) =e^31#