#4x^3-24x^2+29x+15 -: 2x+5# ?

2 Answers
Feb 6, 2017

#=4x^3-24x^2+36 1/2x+5#

#36 1/2x# can also be written as #36.5x " or "73/2x#

Explanation:

#4x^3-24x^2+29x+15/2x+5#

As there is no indication of what is required, we might assume it is just simplify.

The only like terms are those in #x#, which need to be added.

#=4x^3-24x^2+29x+7 1/2x+5#

#=4x^3-24x^2+36 1/2x+5#

Feb 6, 2017

#(4x^3-24x^2+29x+15)/(2x+5) = 2x^2-17x+57-270/(2x+5)#

Explanation:

I think the question was intended to ask for the result of the division:

#(4x^3-24x^2+29x+15)/(2x+5)#

We can split the numerator into multiples of #(2x+5)# like this:

#4x^3-24x^2+29x+15 = (4x^3+10x^2)-(34x^2+85x)+(114x+285)-270#

#color(white)(4x^3-24x^2+29x+15) = 2x^2(2x+5)-17x(2x+5)+57(2x+5)-270#

#color(white)(4x^3-24x^2+29x+15) = (2x^2-17x+57)(2x+5)-270#

So:

#(4x^3-24x^2+29x+15)/(2x+5) = ((2x^2-17x+57)(2x+5)-270)/(2x+5)#

#color(white)((4x^3-24x^2+29x+15)/(2x+5)) = (2x^2-17x+57)-270/(2x+5)#