(− sec ( x ) tan^2 ( x ) − ( 9 − sec ( x ) ) sec^2 ( x ))/tan^2 x−sec(x)tan2(x)−(9−sec(x))sec2(x)tan2x
=(− sec ( x ) (sec^2 ( x ) -1)− ( 9 − sec ( x ) ) sec^2 ( x ))/tan^2 x=−sec(x)(sec2(x)−1)−(9−sec(x))sec2(x)tan2x
=(− sec^3 ( x )+ secx− 9sec^2x + sec^3 ( x ))/tan^2 x=−sec3(x)+secx−9sec2x+sec3(x)tan2x
=(secx− 9sec^2x )/tan^2 x=secx−9sec2xtan2x
=secx/tan^2x− (9sec^2x)/tan^2 x=secxtan2x−9sec2xtan2x
=cosx xxcsc^2x− 9csc^2x=cosx×csc2x−9csc2x