Question #45c04

1 Answer
Jan 2, 2018

See the proof below

Explanation:

We must prove the statement #P(n)# that

#bar(z_1+z_2+z_3+.......z_n)=bar(z_1)+bar(z_2)+bar(z_3)+.......bar(z_n)#

#"Proof by Induction"#

#(1)# When #n=1#

#P(1)#, #=>#, #bar(z_1)=bar(z_1)#

The statement is true for #P(1)#

#"Inductve step"#

Suppose that the statement is true for #P(n)#

#bar(z_1+z_2+z_3+.......z_n)=sum_(k=1) ^nbar(z_k)#

Then,

#bar(z_1+z_2+z_3+.......z_n)+bar(z_(n+1))=(sum_(k=1) ^nbar(z_k))+bar(z_(n+1))#

#=sum_(k=1) ^(n+1)bar(z_k)#

#=bar(z_1+z_2+z_3+.......z_(n+1)#

Therefore,

the statement is true for #P(n+1)#

#"Conclusion : "# The statement is true for #"n=1"#, #"n"# and #"(n+1)"#, we conclude that the statement is true for all #"n"#