Question #0038f

1 Answer
Feb 18, 2017

see explanation

Explanation:

#1/(sec x - tanx) + 1/(secx+tanx) = 2/cosx#

equate the denominator

#(sec x+tan x + sec x - tan x)/((sec x - tanx) *(secx+tanx)) = 2/cosx#

#(2sec x) /(sec ^2x - tan ^2x) = 2/cos x#

make sec and tan become fraction

#(2sec x )/ (1/cos^2 x - sin^2 x/cos ^2 x)= 2/cosx#

#(2sec x )/((1 - sin^2 x)/cos ^2 x)= 2/cosx#

use trig identity so #1-sin^2x =cos ^ 2 x #

#(2sec x )/((cos^2x)/cos ^2 x)= 2/cosx#

#(2sec x )/ 1= 2/cosx#

#2 * 1/cos x = 2/cos x#

#2/cosx = 2/cos x# (verified)