Question #bfd5a

2 Answers

See the answer below:
enter image source here

Feb 24, 2017

I=-arc tan {1/2(sqrttanx+sqrtcotx)}+C.I=arctan{12(tanx+cotx)}+C.

Explanation:

Let, I=int(sqrtcotx-sqrttanx)/(1+3sin2x)dx.I=cotxtanx1+3sin2xdx.

:. I=int(1-tanx)/(sqrttanx(1+3sin2x))dx.

Using, sin2x=(2tanx)/(1+tan^2x), we have,

1+3sin2x=1+(6tanx)/(1+tan^2x)=(tan^2x+6tanx+1)/(1+tan^2x), so,

I=int{(1-tanx)(1+tan^2x)}/{sqrttanx(tan^2x+6tanx+1)}dx, or,

I=int{(1-tanx)(sec^2xdx)}/{sqrttanx(tan^2x+6tanx+1)}.

Now, we use the substn. tanx=t^2rArr sec^2xdx=2tdt.

:. I=int{(1-t^2)(2tdt)}/{t(t^4+6t^2+1)}=2int(1-t^2)/(t^4+6t^2+1)dt.

:. I=2int{t^2(1/t^2-1)}/{t^2(t^2+6+1/t^2)dt

=-2int(1-1/t^2)/{(t+1/t)^2+4}dt.

Finally, sub.ing, t+1/t=u rArr (1-1/t^2)dt=du.

I=-2int1/(u^2+4)du.

=-2(1/2)arc tan(u/2)=-arc tan(u/2).=-arc tan{1/2(t+1/t)}

:. I=-arc tan {1/2(sqrttanx+sqrtcotx)}+C.

Enjoy Maths.!