Question #d7b66

1 Answer
Mar 4, 2017

#lim_(x->1) (1-x)tan ((pix)/2) = 2/pi#

Explanation:

The limit:

#lim_(x->1) (1-x)tan ((pix)/2)#

is in the indeterminate form #0*oo#. We can then write it as:

#lim_(x->1) tan ((pix)/2)/(1/(1-x))#

which is in the form #oo/oo# so we can use l'Hospital's rule:

#lim_(x->1) tan ((pix)/2)/(1/(1-x)) = lim_(x->1) (d/dx tan ((pix)/2))/(d/dx(1/(1-x))) #

#lim_(x->1) tan ((pix)/2)/(1/(1-x))= lim_(x->1) (pi/(2cos^2((xpi)/2)))/(1/(1-x)^2)#

#lim_(x->1) tan ((pix)/2)/(1/(1-x))= lim_(x->1) (pi(1-x)^2)/(2cos^2((xpi)/2))#

This is now in the form #0/0# and we can apply l'Hospital's rule again:

#lim_(x->1) tan ((pix)/2)/(1/(1-x))= lim_(x->1) (d/dx(pi(1-x)^2))/(d/dx (2cos^2((xpi)/2)))#

#lim_(x->1) tan ((pix)/2)/(1/(1-x))= lim_(x->1) (-2pi(1-x))/(-2picos((xpi)/2)sin((xpi)/2))= 2lim_(x->1) (1-x)/sin(pix) #

and again:

#lim_(x->1) tan ((pix)/2)/(1/(1-x))=2lim_(x->1) (d/dx(1-x))/(d/dx sin(pix)) = 2lim_(x->1) -1/(picospix) = 2/pi#