How do you solve #cosx+ cos(3x) =0#?

2 Answers
Feb 18, 2017

#x = pi/2, (3pi)/2, pi/4, (3pi)/4, (5pi)/4 and (7pi)/4#

Explanation:

Note that #cos3x# can be rewritten as #cos(2x + x)#.

#cosx + cos(2x + x) = 0#

Now use #cos(A + B) = cosAcosB - sinAsinB#.

#cosx + cos2xcosx - sin2xsinx = 0#

Apply #cos2x = 2cos^2x -1# and #sin2x = 2sinxcosx#.

#cosx + (2cos^2x - 1)cosx - 2sinxcosx(sinx) = 0#

#cosx + 2cos^3x - cosx - 2sin^2xcosx = 0#

Use #sin^2x + cos^2x = 1#:

#cosx + 2cos^3x - cosx - 2(1 - cos^2x)cosx = 0#

#cosx + 2cos^3x - cosx - 2cosx + 2cos^3x = 0#

#4cos^3x - 2cosx = 0#

Factor:

#2cosx(2cos^2x - 1) = 0#

We have

#cosx = 0#

#x = pi/2, (3pi)/2#

AND

#cosx = +-1/sqrt(2)#

#x = pi/4, (3pi)/4, (5pi)/4 and (7pi)/4#

Hopefully this helps!

Mar 2, 2017

#Cosx+cos3x=0#

#=>2Cos2xcosx=0#

When #cosx=0=cos (pi/2)#

This the general solution as

#=>x=2npipmpi/2" where " n in ZZ#

To get the solution #" " x in [0.2pi]#

For n =0

#x=pi/2#

For n =1

#x=2pi-pi/2=(3pi)/2#

Again when #cos2x=0=cos (pi/2)#

This the general solution as

#=>2x=2npipmpi/2" where " n in ZZ#

#=>x=npipmpi/4" where " n in ZZ#

To get the solution #" " x in [0.2pi]#

For n =0

#x=pi/4#

For n =1

#x=pi+pi/4=(5pi)/4#

#x=pi-pi/4=(3pi)/4#

For n =2

#x=2pi-pi/4=(7pi)/4#