How do you show that #csctheta = (1+ sec theta)/(tan theta + sintheta)#?

2 Answers
Feb 19, 2017

I like to convert everything to sine and cosine and go from there. Use the following identities to do so:

#csctheta = 1/sintheta#
#sectheta = 1/costheta#
#tantheta = sintheta/costheta#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#1/sintheta = (1+ 1/costheta)/(sintheta/costheta + sin theta)#

#1/sintheta = ((costheta + 1)/costheta)/((sin theta + sinthetacostheta)/costheta)#

#1/sintheta = (costheta + 1)/costheta * costheta/(sin theta + sinthetacostheta)#

#1/sintheta = (costheta+ 1)/costheta * costheta/(sintheta(1 + costheta))#

#1/sintheta = 1/sintheta#

#LHS = RHS#

This identity has been proved.

Hopefully this helps!

Feb 19, 2017

#RHS= (1+sec theta )/ (tanx + sinx)#

#= (1+sec theta )/ (sinx/cosx + sinx)#

#= (1+sec theta )/ (sinxsecx + sinx)#

#= (1+sec theta )/ (sinx(secx + 1))#

#=1/sinx=cscx=LHS#

Verified