Write the function as:
#(1+1/x)^x = (e^ln(1+1/x))^x = e^(xln(1+1/x))#
We evaluate now:
#lim_(x->oo) xln(1+1/x)#
This is in the indeterminate form #0*oo#, but we can transform it to the form #0/0# and solve it using l'Hospital's rule:
#lim_(x->oo) xln(1+1/x) = lim_(x->oo) ln(1+1/x)/(1/x)#
#lim_(x->oo) xln(1+1/x) = lim_(x->oo) (d/dx ln(1+1/x))/(d/dx (1/x))#
#lim_(x->oo) xln(1+1/x) = lim_(x->oo) (1/(1+1/x)*(-1/x^2))/(-1/x^2)#
#lim_(x->oo) xln(1+1/x) = lim_(x->oo) 1/(1+1/x) = 1#
Now, as #e^x# is a continuous function we have:
#lim_(x->oo) e^(xln(1+1/x)) = e^((lim_(x->oo) xln(1+1/x))) = e^1 = e#
So, in conclusion:
#lim_(x->oo) (1+1/x)^x = e#