Solve? #5^(2xx x)-5^(x+3)+125=5^x#

2 Answers
Feb 22, 2017

#x=0 and 3#

Explanation:

#5^(2*x)-5^(x+3)+125=5^x#

#=>(5^x)^2-5^x*5^3+125=5^x#

Let #5^x=y#

#=>y^2-125y+125=y#

#=>y^2-y-125y+125=0#

#=>y(y-1)-125(y-1)=0#

#=>(y-1)(y-125)=0#

when #y-1=0=>y=1#

#=>5^x=1=5^0#

#=>x=0#

Again when #y-125=0#

#=>5^x=125=5^3#

#=>x=3#

#x=0,3#

Explanation:

We start with:

#5^(2xx x)-5^(x+3)+125=5^x#

Let's first see that #125=5^3#:

#5^(2xx x)-5^(x+3)+5^3=5^x#

We can use the rules #x^a xx x^b=x^(a+b)# and #(x^a)^b=x^(ab)# to untangle the expressions:

#(5^x)^2-(5^3)5^x+5^3=5^x#

Let's try subtracting #5^x# from both sides to get the #x# terms all on the left:

#(5^x)^2-(5^3)5^x+5^3-5^x=0#

We can combine the #5^x# terms and see that we'll have #-5^3-1=-125-1=126# of them:

#(5^x)^2-(124)5^x+5^3=0#

Let's set #a=5^x#:

#a^2-126a+125=0#

We can now factor this:

#(a-125)(a-1)=0#

#a=1, 125#

Let's now substitute back in:

#5^x=1, 125#

And take each solution separately:

#5^x=1=>x=0#

#5^x=125=5^3=>x=3#

Let's check the answers:

#5^(2xx x)-5^(x+3)+125=5^0#

#5^(2xx 0)-5^(0+3)+125=1#

#5^0-5^3+5^3=1#

#1=1color(white)(000)color(green)sqrt#

~~~~~

#5^(2xx x)-5^(x+3)+125=5^x#

#5^(2xx 3)-5^(3+3)+125=5^3#

#5^6-5^6+125=5^3#

#125=125 color(white)(000)color(green)sqrt#