Question #4d0b1 Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer P dilip_k Mar 1, 2017 #int(sin^3x+cos^3x)/(sin^2 (2x) )dx# #=int(sin^3x+cos^3x)/(2sinxcosx)^2 dx# #=1/4(int(sin^3x/(sin^2xcos^2x)+cos^3x/(sin^2xcos^2x) )dx# #=1/4(intsecxtanxdx+intcosx/sin^2xdx)# #=1/4(intsecxtanxdx+intcotxcosecxdx)# #=1/4(secx-cosec)+c# c = integration constant Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1198 views around the world You can reuse this answer Creative Commons License