Question #9592b

1 Answer
Mar 3, 2017

To find the indefinite integral, let x=sect,

so that x21=tan2x and dx=secttantdt.

Upon substitution we will get

dx(x21)32=secttanttan3tdt

=sectcot2tdt

=csctcottdt=csct+C

Since x=sect, we have cost=1x, so

sint=x21x and

csct+C=1sint=xx21+C

If the integrand should be x21, Then for a<1, use

x21=(1x2).

In this case, substitute x=sint and integrate to get

xx21+C