Question #30f2b

1 Answer
Mar 7, 2017

(1) : dy/dx=1/2{5cos5x-cosx}, or, (1)dy/dx=2cos3xcos2x-3sin3xsin2x.(1):dydx=12{5cos5xcosx},or,(1)dydx=2cos3xcos2x3sin3xsin2x.

(2) : (dY)/dx=6(x-1)(x-3)^2(x+1)^2.(2):dYdx=6(x1)(x3)2(x+1)2.

Explanation:

Y=(x^2-2x-3)^3Y=(x22x3)3

Let, (x^2-2x-3)=t, so, Y=t^3, t=x^2-2x-3.(x22x3)=t,so,Y=t3,t=x22x3.

Thus, YY is a fun. of t,t, &, tt of x.x.

In such cases, (dY)/dxdYdx can be obtained by The Chain Rule :-

"The Chain Rule : "(dY)/dx=((dY)/dt)((dt)/dx)............(star).

Recall that, d/dt(t^n)=nt^(n-1).

Hence, Y=t^3 rArr (dY)/dt=3t^2...(1), and, t=x^2-2x-3

rArr dx/dt=2x-2=2(x-1).............(2).

Using (1) and (2) in (star), we get,

(dY)/dx=(3t^2){2(x-1)}=6(x-1)t^2, &, returning back from t to x,

(dY)/dx=6(x-1)(x^2-2x-3)^2=6(x-1){(x-3)(x+1)}^2, or,

(dY)/dx=6(x-1)(x-3)^2(x+1)^2.

Regarding, the Diffn. of y=sin2xcos3x, we have, 2 Methods :-

Method 1:-

We know, that, 2cosAsinB=sin(A+B)-sin(A-B).

With, A=3x, B=2x, 2cos3xsin2x=sin(3x+2x)-sin(3x-2x)

:. y=cos3xsin2x=1/2{sin5x-sinx}.

Therefore, using the Chain Rule,

dy/dx=1/2{(cos5x)d/dx(5x)-cosx}, or,

dy/dx=1/2{5cos5x-cosx}.

Method 2:-

In this Method, we use the following Product Rule, together

with the Chain Rule.

"Product Rule : "d/dx(uv)=u(dv)/dx+v(du)/dx.

:. dy/dx=(cos3x)d/dx(sin2x)+(sin2x)d/dx(cos3x)

=(cos3x){(cos2x)d/dx(2x)}+(sin2x){(-sin3x)d/dx(3x)}

:. dy/dx=2cos3xcos2x-3sin3xsin2x.

I leave it upon the reader to show that both the Answers are same.

Enjoy Maths.!