Question #fbd74

2 Answers
Mar 19, 2017

#(cos^2x + tan^2x - 1)/tan^2x =sin^2x#

Work on left side:

#(cos^2x + tan^2x - (cos^2x+sin^2x))/tan^2x#

#cos^2x# cancels, leaving:

#(tan^2x-sin^2x)/tan^2x#

Change tan to #sin/cos#:

#((sin^2x/cos^2x)-(Sin^2x/1))/(sin^2x/cos^2x)#

Multiply #(Sin^2x/1)# by #(cos^2x/cos^2x)# to get a common denominator:

#((sin^2x/cos^2x)-((Sin^2xcos^2x)/cos^2x))/(sin^2x/cos^2x)#

#((Sin^2x-sin^2xcos^2x)/cos^2x)/(sin^2x/cos^2x)#

#cos^2x# cancels:

#(sin^2x-sin^2xcos^2x)/sin^2x#

Factor the numerator:

#(sin^2x(1-cos^2x))/sin^2x#

#sin^2x# cancels:

#1-cos^2x# which is also #sin^2x# = right side

Mar 19, 2017

#LHS=(cos^2x + tan^2x - 1)/tan^2x#

#=( tan^2x - (1-cos^2x))/tan^2x#

#=( tan^2x - sin^2x)/tan^2x#

#= tan^2x/tan^2x - sin^2x/tan^2x#

#=1 - sin^2x/(sin^2x/cos^2x)#

#=1 - cos^2x=sin^2x=RHS#