What is #lim_(x->0) ln(sin x + cos x)/x# ?

1 Answer
Mar 9, 2017

#lim_(x->0) ln(sin x + cos x)/x = 1#

Explanation:

#color(white)()#
Intuitive analysis

Notice that for small values of #x#:

#sin x ~~ x#

#cos x ~~ 1#

#ln (x+1) ~~ x#

So:

#ln(sin x+cos x) ~~ ln(x+1) ~~ x#

So we should expect:

#lim_(x->0) ln(sin x + cos x)/x = 1#

#color(white)()#
Semi-formal analysis

#sin x = sum_(n=0)^oo ((-1)^n)/((2n+1)!) x^(2n+1) = x+O(x^3)#

#cos x = sum_(n=0)^oo ((-1)^n)/((2n)!) x^(2n) = 1+O(x^2)#

#ln (x + 1) = sum_(n=0)^oo ((-1)^n)/(n+1) x^(n+1) = x+O(x^2)#

So:

#ln(sin x + cos x)/x = ln(x+1+O(x^2))/x#

#color(white)(ln(sin x + cos x)/x) = (x+O(x^2))/x#

#color(white)(ln(sin x + cos x)/x) = 1+O(x) -> 1" "# as #x -> 0#