Question #8b24f

1 Answer
Mar 10, 2017

r=pm3/2sin(2theta)r=±32sin(2θ)

Explanation:

The pass equations are

{(x=rcostheta),(y=rsintheta):}

so

(r^2)^3=3^2r^4cos^2thetasin^2theta or

r^2=3^2cos^2theta sin^2theta or

r=pm 3costheta sin theta ---------(*)

using sin(a+b)=sin acos b+cosa sinb and making a=b

we get at

sin(2a)=2sina cosa then sin theta cos theta = 1/2 sin(2theta)

substituting into (*) we obtain

r=pm3/2sin(2theta)

Attached a plot.

enter image source here